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The mechanism of PFN emission in fission plays important role in nuclear fission theory from the one 

hand and the information on PFN is highly demanded by nuclear power industry from the other hand. 

 

Analysis of TKE measured in resonance neutron induced fission of 235U revealed surprising 

fluctuation. The recent measurement of PFN multiplicity in 235U resonances demonstrates fluctuations 

of PFN multiplicities to. 

 

One of the interesting observation is the increasing              from the heavy FF only with increase of  

the excitation energy of fissioning system still has no clear explanation 

 

In current report we presenting some preliminary results of measurement of PFN emission in thermal 

neutron induced fission of 235U reaction as test of apparatus for resonance neutron induced fission of  
235U measurements foreseen to perform at IREN facility next year 

 

 

 

 

1. Motivation 

 

)(A
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Adopted from C. Budtz-Jørgensen and H.-H. Knitter, Nucl. Phys., A490,  307(1988) and modified with digital 

pulse processing apparatus  

 2. Experimental setup and data acquisition system. 
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3. Digital Pulse Processing (DPP). 
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In our approach we have oversampled FF signals. The oversampling we used to increase the effective number of bits (ENOB) 

improving the signal representation. In practice the increase of ENOB realized automatically when signal passed through  

second order low pass filter : 

 

 

 

Improved signal presentation (left figure) facilitates numerical solution (differentiation) of  the integral equation 

  

   

 

Solution of the equation is i(t) presented on the right figure for the cathode and two anode signals.  In terms of familiar analog 

electronics the operation performed equivalent to differential filter on the input of spectroscopy amplifier (SA). To simulate 

integrating stage of the SA we implemented integration according to  

 

 

 

The last operation, performed with two correlated anode waveforms, provides the pulse heights of FF.                    
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4. Drift time determination of FF ionization 

The concepts of weighting field and weighting potential states that the instantaneous current induced on a given electrode is 

equal to               , where q is the charge of the carrier,      its velocity, and        is called the weighting field. Another way of 

stating the same principle is that the induced charge on the electrode is given by the product of the charge of the carrier 

multiplied by the difference in the weighting potential  from the beginning to the end of the carrier path               . The weighting 

potential as a function of position was found as the solution of the Laplace equation for the geometry of the detector with 

special boundary conditions. Evaluation of the drift time can be done if the weighting potential inside the sensitive volume of the 

chamber is calculated as shown in the above graphs. Using explicit functions for weighting potential one can find the following 

expression for drift time T for ionization charge density shifting from the origin to the anode: 

                                                                                                                      

 

 

 

where the meanings of d, D, ϴ are clear from the sketch of the TBIC, ϭ is the grid inefficiency factor or it is the value of the 

average weighting potential at grid location, and X is the center for ionization charge distribution along the FF track. Parameter 

T for corresponding anode can be measured using the signal current waveform as follows 
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5. FFs pulse height correction and cos(Θ) evaluation 

Cosines calculated from measured drift 

times T according to formulae above are 

plotted as the difference 

of cosines measured for correlated FF in 

two halves of TGIC to demonstrate the 

quality of the algorithm.  



6. FFs pulse height correction and using evaluated cos(Θ)  
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When FF pass the target it losses  kinetic energy 

due to ionization. The longer the path more the 

energy loss. That’s why the energy losses inversly 

proportional to the cosine between  FF velocity and 

the normal to the target surface. Measurement the 

shift  of double humped FF distribution for different 

invers cosine provide the measure of the energy 

losses for FF in the layer and backing sides of the 

target. This was the first correction of the FF kinetic 

energy for losses in the target.   



7. PHD correction 
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The correction for FF pulse height caused by momentum transfer to working gas atoms by FF  

(non ionizing collisions) during its deceleration – is called pulse height  defect (PHD). The PHD 

depends on the FF mass and kinetic energy and was corrected in data analysis using 

parameterization suggested in  Ref.: F.-J. Hambsch, J. van Aarle, and R. Vogt, Nucl. Instrum. 

and Meth. A361, 257 (1995) . Figures above plotted dependence of the value of the 

corrections on FF mass and kinetic energy values. In our experiment the correction both the  

values of parameters α and β was set to 1 because we used the P10 working gas. 

 



8. FF mass energy distribution. 
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9. Constant fraction time marking for PFN TOF measurement 
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Constant fraction time marking (CFTM) method was implemented in the experiment for 

PFN time-of-flight evaluation. Figures demonstrate the method applied to the neutron 

detector signal. In conventional analog electronics the CFTM method the original signal 

first scaled by factor 0.2 and delayed for 0.1 of the pulse rise time. Then the delayed and 

scaled signal subtracted from the original one, producing bipolar pulse with zero crossing 

point assigned to time of the signal origin. This algorithm was applied to ionization 

chamber’s cathode and the neutron detector signal. The difference between two signals 

was threated as TOF value and plotted on the right plot. 



10. Neutron separation from gamma radiation  

The two window algorithm (fast and total light output component) was implemented and 

resulted function ND(Fast,Total) was plotted on the left and middle figs. demonstrates the 

function ND(Fast,Total) in the reference frame rotated  according to equation  
 

 

 

,where Ω – is axes rotation angle and S>1 – is the scaling factor. Red line in the middle 

figure is PFN-PFG separation line . Lower figure demonstrates the TOF distribution 

before and after PFN separation.  
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11. PFN angular distribution measurement  

 C. Budtz-Jorgensen and H.-H. Knitter, Nucl. Phys., A490, 307 

(1988) 
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12. ND efficiency evaluation for 235U(n,f)  
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The neutron detector PFN detection efficiency was evaluated by comparison of the 

measured TOF distribution with the Maxwellian distribution with T=1.42 MeV. 

Result is plotted on the right graph as detector efficiency dependence on PFN velocity and 

was used for average PFN number correction for evaluation of PFN dependence on FF 

mass and TKE.   
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13. PFN multiplicity on FF mass evaluation from measured data 

FF mass and Energy values were corrected in iterative procedure for recoil according to 

A. Gavron, Nucl. Instrum. and Meth., 115 (1974) 99 
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14. PFN multiplicity on FF TKE evaluation from measured data 
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15. Pulse shape separation  of PFN from PFG in 252CF(sf) experiment  

The two window algorithm (fast and total light output component) was implemented and resulted  

function ND(Fast,Total) was plotted on the left figure. demonstrates the function  

ND(Fast,Total) in  rotated  according to equation  
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16. TOF distribution evaluation after pulse shape analysis 

The left figure demonstrates two dimensional distribution of ND pulses in 

coordinates TOF, Total Light  after the pulse shape algorithm was implemented. 

The right figure demonstrates the TOF distribution obtained after integrating 

the 2D distribution over Total Light applying thresholds as indicated on the 

figure. It should be noticed that increase of the threshold reduces the 

background in high energy part of the TOF. Simultaneously the rise in the 

threshold for low energy part was observed. Interestingly to see the limit, which 

reached approximately  at the same level both for high and low energy parts of 

this distribution. This limit was found to be belonging to so cold non-correlated 

background originated from undetected by ionization chamber FF.  
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17. Evaluation of neutron detection efficiency for 252CF(sf)  

Such a background was first was studied and explained in publication of PTB 

team in NIM A274 (1989) 217-221. This paper explain how the background can be 

evaluated and subtracted from the measured data. In our experiments we subtracted 

the background before correcting the neutron detector efficiency dependence on FF 

velocity. 
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18. PFN multiplicity on FF mass and TKE  evaluation from measured data 

140 160 180 200 220
0

1

2

3

4

5

6

7

8

A
v
e

ra
g

e
P

F
N

TKE [MeV]



19. Conclusions 
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The digital data acquisition system was developed and tested in quite  

 difficult experiment. 

 

The digital pulse processing algorithms was developed and tested both  

 on-line and off-line. 

 

The software for PFN multiplicity analysis was revised and some found  

 bugs were removed 

 

The result obtained in this work are differ from the literature and it forces  

us to revise all stage  of new development to verify or improve our recent result. 
 

 

 




